博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
memcache 详解
阅读量:6661 次
发布时间:2019-06-25

本文共 11441 字,大约阅读时间需要 38 分钟。

hot3.png

MemCache是什么

 

MemCache是一个自由、源码开放、高性能、分布式的分布式内存对象缓存系 统,用于动态Web应用以减轻数据库的负载。它通过在内存中缓存数据和对象来减少读取数据库的次数,从而提高了网站访问的速度。MemCaChe是一个存 储键值对的HashMap,在内存中对任意的数据(比如字符串、对象等)所使用的key-value存储,数据可以来自数据库调用、API调用,或者页面 渲染的结果。MemCache设计理念就是小而强大,它简单的设计促进了快速部署、易于开发并解决面对大规模的数据缓存的许多难题,而所开放的API使得 MemCache能用于Java、C/C++/C#、Perl、Python、PHP、Ruby等大部分流行的程序语言。

另外,说一下MemCache和MemCached的区别:

1、MemCache是项目的名称

2、MemCached是MemCache服务器端可以执行文件的名称

MemCache的官方网站为

 

MemCache访问模型

为了加深理解,我模仿着原阿里技术专家李智慧老师《大型网站技术架构 核心原理与案例分析》一书MemCache部分,自己画了一张图:

 

特别澄清一个问题,MemCache虽然被称为"分布式缓存",但是MemCache本身完全不具备分布式的功能,MemCache集群之间不会相互

通信(与之形成对比的,比如JBoss Cache,某台服务器有缓存数据更新时,会通知集群中其他机器更新缓存或清除缓存数据),所谓的"分布式",完全依赖于客户端程序的实现,就像上面这张图的流程一样。

同时基于这张图,理一下MemCache一次写缓存的流程:

1、应用程序输入需要写缓存的数据

2、API将Key输入路由算法模块,路由算法根据Key和MemCache集群服务器列表得到一台服务器编号

3、由服务器编号得到MemCache及其的ip地址和端口号

4、API调用通信模块和指定编号的服务器通信,将数据写入该服务器,完成一次分布式缓存的写操作

 

读缓存和写缓存一样,只要使用相同的路由算法和服务器列表,只要应用程序查询的是相同的Key,MemCache客户端总是访问相同的客户端去读取数据,只要服务器中还缓存着该数据,就能保证缓存命中。

这种MemCache集群的方式也是从分区容错性的方面考虑的,假如Node2宕 机了,那么Node2上面存储的数据都不可用了,此时由于集群中Node0和Node1还存在,下一次请求Node2中存储的Key值的时候,肯定是没有 命中的,这时先从数据库中拿到要缓存的数据,然后路由算法模块根据Key值在Node0和Node1中选取一个节点,把对应的数据放进去,这样下一次就又 可以走缓存了,这种集群的做法很好,但是缺点是成本比较大。

一致性Hash算法

从上面的图中,可以看出一个很重要的问题,就是对服务器集群的管理,路由算法至关重要,就和负载均衡算法一样,路由算法决定着究竟该

访问集群中的哪台服务器,先看一个简单的路由算法。

1、余数Hash

比方说,字符串str对应的HashCode是50、服务器的数目是3,取余数得 到2,str对应节点Node2,所以路由算法把str路由到Node2服务器上。

由于HashCode随机性比较强,所以使用余数Hash路由算法就可 以保证缓存数据在整个MemCache服务器集群中有比较均衡的分布。

如果不考虑服务器集群的伸缩性(什么是伸缩性,请参见),那么余数Hash算法几乎可以满足绝大多数的缓存路由需求,但是当分布式缓存集群需要扩容的时候,就难办了。

就假设MemCache服务器集群由3台变为4台吧,更改服务器列表,仍然使用余 数Hash,50对4的余数是2,对应Node2,但是str原来是存在

Node1上的,这就导致了缓存没有命中。如果这么说不够明白,那么不妨举个例 子,原来有HashCode为0~19的20个数据,那么:

HashCode 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
路由到的服务器 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1

现在我扩容到4台,加粗标红的表示命中:

HashCode 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
路由到的服务器 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

 

如果我扩容到20+的台数,只有前三个HashCode对应的Key是命中的,也 就是15%。当然这只是个简单例子,现实情况肯定比这个复杂得多,不过足以说明,使用余数Hash的路由算法,在扩容的时候会造成大量的数据无法正确命中 (其实不仅仅是无法命中,那些大量的无法命中的数据还在原缓存中在被移除前占据着内存)。这个结果显然是无法接受的,在网站业务中,大部分的业务数据度操 作请求上事实上是通过缓存获取的,只有少量读操作会访问数据库,因此数据库的负载能力是以有缓存为前提而设计的。当大部分被缓存了的数据因为服务器扩容而 不能正确读取时,这些数据访问的压力就落在了数据库的身上,这将大大超过数据库的负载能力,严重的可能会导致数据库宕机。

这个问题有解决方案,解决步骤为:

(1)在网站访问量低谷,通常是深夜,技术团队加班,扩容、重启服务器

(2)通过模拟请求的方式逐渐预热缓存,使缓存服务器中的数据重新分布

2、一致性Hash算法

一致性Hash算法通过一个叫做一致性Hash环的数据结构实现Key到缓存服务器的Hash映射,看一下我自己画的一张图:

 

具体算法过程为:先构造一个长度为232的整数环(这个环被称为一致性Hash环),根据节点名称的Hash值(其分布为[0, 232-1])将缓存服务器节点放置在这个Hash环上,然后根据需要缓存的数据的Key值计算得到其Hash值(其分布也为[0, 232-1]),然后在Hash环上顺时针查找距离这个Key值的Hash值最近的服务器节点,完成Key到服务器的映射查找。

就如同图上所示,三个Node点分别位于Hash环上的三个位置,然后Key值根 据其HashCode,在Hash环上有一个固定位置,位置固定下之后,Key就会顺时针去寻找离它最近的一个Node,把数据存储在这个Node的 MemCache服务器中。使用Hash环如果加了一个节点会怎么样,

看一下:

看到我加了一个Node4节点,只影响到了一个Key值的数据,本来这个Key值 应该是在Node1服务器上的,现在要去Node4了。采用一致性Hash算法,的确也会影响到整个集群,但是影响的只是加粗的那一段而已,相比余数 Hash算法影响了远超一半的影响率,这种影响要小得多。

更重要的是,集群中缓存服务器节点越多,增加节点带来的影响越小,很好理解。换句话说,随着集群规模的增大,继续命中原有缓存数据的概率会越来越大,虽然仍然有小部分数据缓存在服务器中不能被读到,但是这个比例足够小,即使访问数据库,也不会对数据库造成致命的负载压力。

至于具体应用,这个长度为232的一致性Hash环通常使用二叉查找树实现,至于二叉查找树,就是算法的问题了,可以自己去查询相关资料。

 

MemCache实现原理

首先要说明一点,MemCache的数据存放在内存中,存放在内存中个人认为意味着几点:

1、访问数据的速度比传统的关系型数据库要快,因为Oracle、MySQL这些传统的关系型数据库为了保持数据的持久性,数据存放在硬盘中,IO操作速度慢

2、MemCache的数据存放在内存中同时意味着只要MemCache重启了,数据就会消失

3、既然MemCache的数据存放在内存中,那么势必受到机器位数的限制,这个之前的文章写过很多次了,32位机器最多只能使用2GB的内存空间,64位机器可以认为没有上限.

然后我们来看一下MemCache的原理,MemCache最重要的莫不是内存分配的内容了,MemCache采用的内存分配方式是固定空间分配,

还是自己画一张图说明:

这张图片里面涉及了slab_class、slab、page、chunk四个概念,它们之间的关系是:

1、MemCache将内存空间分为一组slab

2、每个slab下又有若干个page,每个page默认是1M,如果一个slab占用100M内存的话,那么这个slab下应该有100个page

3、每个page里面包含一组chunk,chunk是真正存放数据的地方,同一个slab里面的chunk的大小是固定的

4、有相同大小chunk的slab被组织在一起,称为slab_class

MemCache内存分配的方式称为allocator,slab的数量是有限的,几个、十几个或者几十个,这个和启动参数的配置相关。

MemCache中的value过来存放的地方是由value的大小决定 的,value总是会被存放到与chunk大小最接近的一个slab中,比如slab[1]的

chunk大小为80字节、slab[2]的chunk大小 为100字节、slab[3]的chunk大小为128字节(相邻slab内的chunk基本以1.25为比例进行增长,

MemCache启动时可以用-f指定这个比例), 那么过来一个88字节的value,这个value将被放到2号slab中。放slab的时候,首先slab要

申请内存,申请内存是以page为单位的, 所以在放入第一个数据的时候,无论大小为多少,都会有1M大小的page被分配给该slab。

申请到page后,slab会将这个page的内存按 chunk的大小进行切分,这样就变成了一个chunk数组,最后从这个chunk数组中选择一个用于存储数据。

如果这个slab中没有chunk可以分配了怎么办,如果MemCache启动没 有追加-M(禁止LRU,这种情况下内存不够会报Out Of Memory错误),

那么MemCache会把这个slab中最近最少使用的chunk中的数据清理掉,然后放上最新的数据。针对MemCache的内存 分配及回收算法,

总结三点:

 

1、MemCache的内存分配chunk里面会有内存浪费,88字节的value分配在128字节(紧接着大的用)的chunk中,就损失了30字节,但是这

     也避免了管理内存碎片的问题

2、MemCache的LRU算法不是针对全局的,是针对slab的

 

3、应该可以理解为什么MemCache存放的value大小是限制的,因为一个新数据过来,slab会先以page为单位申请一块内存,申请的内存最多

     就只有1M,所以value大小自然不能大于1M了

 

再总结MemCache的特性和限制

上面已经对于MemCache做了一个比较详细的解读,这里再次总结MemCache的限制和特性:

1、MemCache中可以保存的item数据量是没有限制的,只要内存足够

2、MemCache单进程在32位机中最大使用内存为2G,这个之前的文章提了多次了,64位机则没有限制

3、Key最大为250个字节,超过该长度无法存储

4、单个item最大数据是1MB,超过1MB的数据不予存储

5、MemCache服务端是不安全的,比如已知某个MemCache节点,可以直接telnet过去,并通过flush_all让已经存在的键值对立即失效

6、不能够遍历MemCache中所有的item,因为这个操作的速度相对缓慢且会阻塞其他的操作

 

7、MemCache的高性能源自于两阶段哈希结构:第一阶段在客户端,通过 Hash算法根据Key值算出一个节点;第二阶段在服务端,

     通过一个内部的Hash算法,查找真正的item并返回给客户端。从实现的角度 看,MemCache是一个非阻塞的、基于事件的服务器程序

 

8、MemCache设置添加某一个Key值的时候,传入expiry为0表示这个Key值永久有效,这个Key值也会在30天之后失效,见memcache.c的

     源代码:

 

#define REALTIME_MAXDELTA 60*60*24*30static rel_time_t realtime(const time_t exptime) {       if (exptime == 0) return 0;       if (exptime > REALTIME_MAXDELTA) {                                     if (exptime <= process_started)                                               return (rel_time_t)1;                                               return (rel_time_t)(exptime - process_started);         } else {                                                                                return (rel_time_t)(exptime + current_time);            }}

 

这个失效的时间是memcache源码里面写的,开发者没有办法改变MemCache的Key值失效时间为30天这个限制

 

MemCache指令汇总

上面说过,已知MemCache的某个节点,直接telnet过去,就可以使用各种命令操作MemCache了,下面看下MemCache有哪几种命令:

命    令 作    用
get 返回Key对应的Value值
add  添加一个Key值,没有则添加成功并提示STORED,有则失败并提示NOT_STORED
set   无条件地设置一个Key值,没有就增加,有就覆盖,操作成功提示STORED
replace  按照相应的Key值替换数据,如果Key值不存在则会操作失败 
stats 返回MemCache通用统计信息(下面有详细解读)
stats items 返回各个slab中item的数目和最老的item的年龄(最后一次访问距离现在的秒数)
stats slabs 返回MemCache运行期间创建的每个slab的信息(下面有详细解读)
version 返回当前MemCache版本号
flush_all 清空所有键值,但不会删除items,所以此时MemCache依旧占用内存
quit 关闭连接

 

stats指令解读

stats是一个比较重要的指令,用于列出当前MemCache服务器的状态,拿一组数据举个例子:

 

STAT pid 1023STAT uptime 21069937STAT time 1447235954STAT version 1.4.5STAT pointer_size 64STAT rusage_user 1167.020934STAT rusage_system 3346.933170STAT curr_connections 29STAT total_connections 21STAT connection_structures 49STAT cmd_get 49STAT cmd_set 7458STAT cmd_flush 0STAT get_hits 7401STAT get_misses 57..(delete、incr、decr、cas的hits和misses数,cas还多一个badval)STAT auth_cmds 0STAT auth_errors 0STAT bytes_read 22026555STAT bytes_written 8930466STAT limit_maxbytes 4134304000STAT accepting_conns 1STAT listen_disabled_num 0STAT threads 4STAT bytes 151255336STAT current_items 57146STAT total_items 580656STAT evicitions 0

 

这些参数反映着MemCache服务器的基本信息,它们的意思是:

参  数  名 作      用
pid MemCache服务器的进程id 
uptime 服务器已经运行的秒数
time 服务器当前的UNIX时间戳 
version MemCache版本 
pointer_size 当前操作系统指针大小,反映了操作系统的位数,64意味着MemCache服务器是64位的 
rusage_user 进程的累计用户时间 
rusage_system  进程的累计系统时间 
curr_connections   当前打开着的连接数
total_connections   当服务器启动以后曾经打开过的连接数
connection_structures  服务器分配的连接构造数 
cmd_get  get命令总请求次数 
cmd_set set命令总请求次数 
cmd_flush  flush_all命令总请求次数 
get_hits  总命中次数,重要,缓存最重要的参数就是缓存命中率,以get_hits / (get_hits + get_misses)表示,比如这个缓存命中率就是99.2% 
get_misses  总未命中次数 
auth_cmds  认证命令的处理次数 
auth_errors  认证失败的处理次数 
bytes_read  总读取的字节数
bytes_written  总发送的字节数 
 limit_maxbytes 分配给MemCache的内存大小(单位为字节) 
accepting_conns  是否已经达到连接的最大值,1表示达到,0表示未达到
listen_disabled_num  统计当前服务器连接数曾经达到最大连接的次数,这个次数应该为0或者接近于0,如果这个数字不断增长, 就要小心我们的服务了
threads  当前MemCache总线程数,由于MemCache的线程是基于事件驱动机制的,因此不会一个线程对应一个用户请求 
bytes  当前服务器存储的items总字节数
current_items  当前服务器存储的items总数量 
total_items  自服务器启动以后存储的items总数量 

 

stats slab指令解读

如果对上面的MemCache存储机制比较理解了,那么我们来看一下各个slab中的信息,还是拿一组数据举个例子:

 

1 STAT1:chunk_size 96 2 ... 3 STAT 2:chunk_size 144 4 STAT 2:chunks_per_page 7281 5 STAT 2:total_pages 7 6 STAT 2:total_chunks 50967 7 STAT 2:used_chunks 45197 8 STAT 2:free_chunks 1 9 STAT 2:free_chunks_end 576910 STAT 2:mem_requested 608463811 STAT 2:get_hits 4808412 STAT 2:cmd_set 5958827113 STAT 2:delete_hits 014 STAT 2:incr_hits 015 STAT 2:decr_hits 016 STAT 2:cas_hits 017 STAT 2:cas_badval 018 ...19 STAT 3:chunk_size 21620 ...

 

首先看到,第二个slab的 chunk_size(144)/第一个slab的chunk_size(96)=1.5,第三个slab的chunk_size(216)/第二个 slab的chunk_size(144)=1.5,可以确定这个MemCache的增长因子是1.5,chunk_size以1.5倍增长。然后解释下 字段的含义:

参  数  名 作      用
chunk_size 当前slab每个chunk的大小,单位为字节
chunks_per_page 每个page可以存放的chunk数目,由于每个page固定为1M即1024*1024字节,所以这个值就是(1024*1024/chunk_size)
total_pages 分配给当前slab的page总数
total_chunks 当前slab最多能够存放的chunk数,这个值是total_pages*chunks_per_page
used_chunks 已经被分配给存储对象的chunks数目
free_chunks 曾经被使用过但是因为过期而被回收的chunk数
free_chunks_end 新分配但还没有被使用的chunk数,这个值不为0则说明当前slab从来没有出现过容量不够的时候
mem_requested 当前slab中被请求用来存储数据的内存空间字节总数,(total_chunks*chunk_size)-mem_requested表示有多少内存在当前slab中是被闲置的,这包括未用的slab+使用的slab中浪费的内存
get_hits 当前slab中命中的get请求数
cmd_set 当前slab中接收的所有set命令请求数
delete_hits 当前slab中命中的delete请求数
incr_hits 当前slab中命中的incr请求数
decr_hits 当前slab中命中的decr请求数
cas_hits 当前slab中命中的cas请求数
cas_badval 当前slab中命中但是更新失败的cas请求数

看到这个命令的输出量很大,所有信息都很有作用。举个例子吧,比如第一个slab 中使用的chunks很少,第二个slab中使用的chunks很多,这时就可以考虑适当增大MemCache的增长因子了,让一部分数据落到第一个 slab中去,适当平衡两个slab中的内存,避免空间浪费。

 

MemCache的Java实现实例

讲了这么多,作为一个Java程序员,怎么能不写写MemCache的客户端的实 现呢?MemCache的客户端有很多第三方jar包提供了实现,其中比较好的当属XMemCached了,XMemCached具有效率高、IO非阻 塞、资源耗费少、支持完整的协议、允许设置节点权重、允许动态增删节点、支持JMX、支持与Spring框架集成、使用连接池、可扩展性好等诸多优点,因 而被广泛使用。这里利用XMemCache写一个简单的MemCache客户单实例,也没有验证过,纯属抛砖引玉:

 

public class MemCacheManager{    private static MemCacheManager instance = new MemCacheManager();        /** XMemCache允许开发者通过设置节点权重来调节MemCache的负载,设置的权重越高,该MemCache节点存储的数据越多,负载越大 */    private static MemcachedClientBuilder mcb =             new XMemcachedClientBuilder(AddrUtil.getAddresses("127.0.0.1:11211 127.0.0.2:11211 127.0.0.3:11211"), new int[]{1, 3, 5});    private static MemcachedClient mc = null;        /** 初始化加载客户端MemCache信息 */    static    {        mcb.setCommandFactory(new BinaryCommandFactory()); // 使用二进制文件        mcb.setConnectionPoolSize(10); // 连接池个数,即客户端个数        try        {            mc = mcb.build();        }        catch (IOException e)        {            e.printStackTrace();        }            }        private MemCacheManager()    {            }        public MemCacheManager getInstance()    {        return instance;    }        /** 向MemCache服务器设置数据 */    public void set(String key, int expiry, Object obj) throws Exception    {        mc.set(key, expiry, obj);    }        /** 从MemCache服务器获取数据 */    public Object get(String key) throws Exception    {        return mc.get(key);    }        /**     * MemCache通过compare and set即cas协议实现原子更新,类似乐观锁,每次请求存储某个数据都要附带一个cas值,MemCache     * 比对这个cas值与当前存储数据的cas值是否相等,如果相等就覆盖老数据,如果不相等就认为更新失败,这在并发环境下特别有用     */    public boolean update(String key, Integer i) throws Exception    {        GetsResponse
result = mc.gets(key); long cas = result.getCas(); // 尝试更新key对应的value if (!mc.cas(key, 0, i, cas)) { return false; } return true; }}

 

Memcache 数据过期不是实时删除的,而是在下次访问该模块时,检查时间戳,过期删除,也叫做懒删除,

lazy expiration, 惰性失效. 

LRU 针对的是slab级别的缓存替换

 

应用实例:

1.缓存数据库查询结果,加快访问速度,及时返回数据(准确性 欠考虑)

2.中继数据库同步延迟问题:写入之后需要马上读取刚才写入的数据,但是读库与写库之间存在同步延迟问题,可以写入数据库之后,立马写入memcache 

存在问题:

1.安全性问题,直接telnet就可以访问了,建议在内网访问,避免暴露地址及端口,建议修改端口

2.缓存击穿,一直查询不存在的数据,直接大量访问数据库,可以设置不存在数据对应的值,标记为不存在,存在之后再去更新

3.数据雪蹦,刚开始时无缓存,大量数据直接访问数据库,系统奔溃,重启后还是存在无缓存的问题,可以跑脚本预热,预先加载 一些常用的缓存数据,

4.缓存同时大量失效问题,造成同一时间大量访问直接到数据库,可以设计不同的过期时间,加一个随机值,避免同时存在大量的过期缓存。

 

转载于:https://my.oschina.net/Chaos777/blog/730115

你可能感兴趣的文章
Bogart BogartPublic.vb
查看>>
〖Ruby〗Ruby运算符/优先级
查看>>
windows services
查看>>
android基础知识:SharedPreferences和PreferenceActivity
查看>>
移动web app开发小贴士 收藏有用
查看>>
GridView中超链接设置
查看>>
oc/object-c/ios哪种遍历NSArray/NSDictionary方式快?测试报告
查看>>
H264解码的一个測试程序
查看>>
编译原理学习导论
查看>>
22、TTS技术
查看>>
SQLServer、MySQL、Oracle语法差异小集锦
查看>>
cmake 学习笔记(一)
查看>>
mysql SELECT FOR UPDATE语句使用示例
查看>>
反接保护电路 Reverse Voltage Protection
查看>>
linux命令--nslookup
查看>>
.net 时间戳互相转换(精确到毫秒)
查看>>
彻底弄懂css中单位px和em,rem的区别
查看>>
项目管理Redmine和版本跟踪SVN的完美结合
查看>>
MVC5:使用Ajax和HTML5实现文件上传功能
查看>>
Unreal Engine 4 C++ 能够创建角色Zoom摄像头(资源)
查看>>